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Computation of Coplanar-Type Strip-Line Characteristics
by Relaxation Method and lts Application .

to Microwave Circuits

TAKESHI HATSUDA, MEMBER, TEEE

Abstract—The characteristics of new strip lines [i.e., a single
strip-conductor coplanar-type strip line (S-CPS), a two symmetrical
strip-conductor coplanar-type strip line (T-CPS), and a coupled strip-
conductor coplanar-type strip line (C-CPS), which consists of single
two-center strip conductors or coupled strip conductors and ground
plates on a dielectric substrate and outer ground conductor] are cal-
culated by the relaxation method. The effect of the outer ground con-
ductor and side wall on these lines is analyzed and the characteristic
impedance and phase-velocity ratio are determined. The character-
istic impedance is determined experimentally and the maximum
values of the discrepancies compared with the calculated value of
each of the lines are 2.0-3.0 percent.

Application examples of the coplanar-type strip line to microwave
transistor amplifier and parallel-coupled filter are shown.

A transistor amplifier of small size, light weight, wide bandwidth,

and improved reliability is achieved.

A parallel-coupled filter small in size (reduction ratio is more than
50 percent), with good frequency symmetry and featuring easy
resonance frequency fine tuning is obtained.

I. INTRODUCTION

ICROWAVE circuits used in a communication satel-
lite, for example, require light weight, small size,
and high reliability, so the strip line is suited to these needs.
The characteristic impedance and phase—velocity ratio
of conventional triplate strip lines are determined by the
thickness of the dielectric substrate and its relative di-
electric constant, by the width of the strip conductors,
and by the height of the line. In order to obtain a smaller
line when using the same dielectric substrate and the same
height of line, or to obtain a more versatile line, different
types of new lines must be considered.

The coplanar waveguide (CPW) is very attractive and
it is analyzed in open boundary by using conformal map-
ping [17]. But closed boundary lines are needed for high-
gain amplifier circuits, and lines having side walls can help
to miniaturize microwave circuits.

In this paper, three new types of strip lines [i.e., the
single strip-conductor coplanar-type strip line (S-CPS),
which has a center strip conductor and ground plates on
dielectric substrate as shown in Fig. 1(a), the two
symmetrical strip-conductor coplanar-type strip line
(T-CP8), which is shown in Fig. 1(b), and the coupled
strip-conductor coplanar-type strip line (C-CPS), which
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Fig. 1. (a) Single strip-conductor coplanar-type strip line (S-CPS).

(b) Two symmetrical strip-conductor coplanar-type strip line
g’g-gggg (¢) Coupled strip-conductor coplanar-type strip line

is shown in Fig. 1(c¢)] are analyzed by the use of the re-
laxation method [27]-[107].

As one example of application of S-CPS, a transistor
amplifier for an on-board satellite transponder has been
developed. The resulting amplifier is small in size, light
in weight, and has more resistivity to shock and vibra-
tion, with good operational performance. Other advantages
achieved are wider amplifier bandwidth, a simpler more
reliable technique of grounding the emitter lead of a tran-
sistor, and easier construction of a bypass capacitor than
by conventional techniques used with conventional tri-
plate strip line and mierostrip.

A four-stage amplifier and an isolator were assembled
into a simple compact package, resulting in high perform-~
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ance stability and miniaturization of the amplifier as-
sembly.

Another application is the parallel-coupled bandpass
filter using C-CPS. The resulting bandpass filter has good
frequency symmetry because of the small difference be-
tween even- and odd-mode phase~velocity ratio, com-
pared with the conventional suspended triplate strip line.
Small filter size is achieved because of the smaller value of
the phase—velocity ratio and mainly by the fringing ca-
pacitance between the ground plates and the edge of the
resonator. The effect of side wall and other circuits near
the filter is smaller than in a conventional type.

II. COPLANAR-TYPE STRIP LINES

The characteristic impedance and phase—velocity ratio
of conventional triplate strip lines are determined by the
thickness of the dielectric substrate and its relative di-
electric ‘constant, by the width of the strip conductors,
and by the height of the line. In order to obtain a smaller
line when using the same dielectric substrate and same
height of line, or to obtain a more versatile line, different
types of new lines must be considered.

The new types of strip lines (S-CPS, T-CPS, and C-CPS)
are analyzed by the use of the relaxation method.

The parameters in Fig. 1(a) are as follows: s is the height
of the line; g is the width of the line; w is the width of the
center strip conductor; d is the thickness of the dielectric
substrate; e is the relative dielectric constant of the di-
electric substrate; ¢ is the width of the supporting dielectric
(Teflon) ; € is the relative dielectric constant of the sup-
porting dielectric; a is the distance between the center
strip conductor and the ground plate; b is the width of the
ground plate; I is the integrating path; and ¢ is the poten-
tial of conductor. In Fig. 1(b), € is the relative dielectric
constant of the dielectric substrate, and I and II are the
integrating paths. In Fig. 1(¢), ¢ is the gap between cou-
pling strip conductors.

As shown in Fig. 1(a), the dielectric substrate is sup-
ported by another dielectric (Teflon, whose relative di-
electric constant is e, = 2.1). This is used as a shock ab-
sorber and also for maintaining the same potential (¢, = 0)
at the ground plate and the outer ground conduetor by
putting copper foil between the Teflon and the ground
plate.

III. CHARACTERISTICS OF THE SINGLE
STRIP-CONDUCTOR COPLANAR-TYPE
STRIP LINE (S-CPS)

Characteristics of the strip line shown in Fig. 1(a) can
be determined by solving the two-dimensional problem
presented by boundary conditions of a potential for an
inner strip conductor, where Y1 = 1.0 of a potential for
the ground plate and the outer ground conductor where
Yo = 0. The solution of such an inhomogeneous trans-
mission line is determined from Laplace’s equation

™

a2 o O

In the relaxation method [2]-[107], (1) is expanded to a

(1)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, OCTOBER 1975

simultaneous difference equation. Because of symmetry,
only half of the area of Fig. 1(a) needs to be considered.
The analysis of CPS differs only slightly from that of
{117 and [12] (i.e., the conventional strip line, where
b = 0 in Fig. 1).

In the caleulation, the thickness of the strip conductor
is considered as zero, because this thickness is actually
very small when compared with the dielectrie substrate
thickness.

A. Effect of Side Wall and Outer Ground Conductor

The coplanar strip line is characterized by ground plates
and shielding by an outer ground conductor. The effects of
the side wall and the outer ground conductor of the S-CPS
are examined first. The characteristics of the S-CPS de-
pend upon parameter b/[ (w/2) + a], as shown in Fig. 2.
In this calculation, s = 4.3 mm, d = 0.61 mm, & = 9.4,
and ¢ = 1.0.

Asseen in Fig. 2, characteristic impedance Z, and phase—
velocity ratio v/vy asymptotically approach constant values
when the ratio b/[ (w/2) + a]is larger than 1.0-1.5. This
is the merit of S-CPS, i.e., the effect of side wall and other
circuits near the center strip conductor is smaller than in

- a conventional type.

When b becomes zero, the values of Z, and v/v, become
the values one obtains with the conventional single strip-
conductor strip line [117], [12].

The effect of changes of the value of s is shown in Fig. 3.
The conventional type (i.e., b = 0) with w/g = 0.18 is
also shown in Fig. 3. The computation parameters are
g =10.7 mm, d = 0.61 mm, & = 9.4, ¢ = 2.1, w/g =
0.18, and a/g = 0.06. The variation of Z is smaller, but
/vy is larger in the S-CPS than in the conventional type.
In the S-CPS, values of Z, and v/# tend to become con-
stant when d/s becomes small (i.e., s becomes large). The
d/s ratio corresponding to s = 4.3 mm, d = 0.61 mm
(V symbol in Fig. 3) is used in the following calculations.
The effect, of s is seen to be small for such a ratio (d/s =
0.142).

B. Characteristic Impedance and Phase—Velocity Ratio of
S-CPS

Strip-line dimensions of s = 4.3 mm, ¢ = 10.7 mm,
d =06l mm, ¢ = 0.94, { = 1.5 mm, and ¢ = 2.1 are
computed.

In Fig. 4, Z, and v/v versus a/s of S-CPS are shown
when w/s assumes constant values of 0.143, 0.286, and
0.429. The point (symbol -) shows the values of a con-
ventional type. When the value of a becomes small, Z,
and v/v, become small.

Table I shows a comparison of Z, and v/v for conven-
tional type and S-CPS. The reduction ratio of S-CPS is
40-50 percent of Z and 25-30 percent of v/v,. This redue-
tion ratio becomes large when a/s becomes smaller.

In Fig. 5, Z, and v/v, versus w/s of the S-CPS are shown
when a/s assumes constant values of 0.143, 0.286, and
0.429. The top solid-line curve in Fig. 5 shows the charac-
teristics with no Teflon, and the dashed-line curves show
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TABLE 1
RepvuctioN RaTio OF Zy AND /v ¥oR S-CPS
T wfs=0 143 w/s=0. 286
! Conventional | S-CPS Reduction Ratio | Conventional | SCPS Reduction Ratio
Type a/s=0.143 (percent) Type al/s=0 143 (percent)
Zo 1040 640 38 85.50 423 50
vfve 063 0 47 25 0 67 0. 47 30
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Fig. 5. Z, and v/vo of S-CPS versus w/s for a/s const.

the characteristics of a conventional type (i.e., & = 1.0).
The ratios of w/s and v/vy for 50-Q transmission line of
S-CPS compared with the conventional type of strip line
are shown in Table II. The effect of Teflon on the S-CPS
is also shown in Fig. 5. The effect is smaller than for the
conventional type.

C. Equipotential Diagram of S-CPS

Tig. 6 shows the calculated result of a half-area of
equipotential diagram where s = 4.3, g = 10.7, d = 0.61,
t=15mm, e = 94, a = 2.1, w/s = 0429, and a/s =
0.143.

From Fig. 6, the following can be seen.

1) The field is concentrated by the existence of ground
plates. This explains why Z, and v/v, approach constant
values when the b becomes larger than a certain value.

2) The equipotential area did not expand in the sup-
porting dielectrics (Teflon), so the effect of the Teflon
is small.

3) The characteristic change caused by the influence
of other circuits (for example, a biasing circuit in a tran-
sistor amplifier) on the ground plates assumes a small
value in S-CPS.

4) In the case of other parallel lines near the center
strip conductor, the coupling of these lines is small due
to the existence of ground plates.

IV. CHARACTERISTICS OF THE TWO
SYMMETRICAL STRIP-CONDUCTOR
COPLANAR-TYPE STRIP LINE
(T-CPS)

As shown in Fig. 1(b), T-CPS has two center strip con-
ductors and ground plates on both sides of a dielectric
substrate. The following are advantages of this type of
line.

1) It is smaller than S-CPS.

2) By using both sides of the dielectric substrate, three-
dimensional utilization of the line can be achieved.

3) In a conventional-type strip line, values of Z, and
v/vy are determined from the thickness of diclectric sub-
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TABLE 1T
REpucTIioN RATIO OF w/s AND 2/0 ¥OR S-CPS 50-Q Ling
Reduction Reduchon
w/s | Ratin v/ve tio
{percent) {percent)
T();np:entional 09 073
a/s=0 286 0 64 29 0. 62 15
a/s=0, 143 036 60 0 51 30
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Fig. 6. Equipotential diagram of S-CPS.

strate and its dielectric constant, the height of line (s),
and the width of the center strip conductor (w). However,
in CP8, the values of Z, and v/, can be changed by chang-
ing the distance between center strip conductor and ground
plate (a), so this line has more design flexibility for filters
or directional couplers.

Computer programs were developed for two modes,
1e., 1) ¥» = ¥» = 1.0 and ¢y = 0 for the even mode, and
2) ¢1 = 1.0, y» = —1.0, and ¢ = 0 for the odd mode,
where ¥ and y» are the potentials of the upper and lower
strip conductors, respectively. Four characteristic im-
pedances and four phase-velocity ratios are defined, i.e.,
Zol'y, Zo', (v/mo)., and (v/v,) ! for the even-mode case
and Zook, Zoo't, (v/10)o%, and (v/vg) . for the odd-mode
case.

Notations I and IT indicate the integrating path, where
I encloses one strip conductor and II encloses two strip
conductors in Fig. 1(b), e denotes even mode and o de-

notes odd mode. In the symmetrical strip conductor case
Zol/2
(v/v0) M

/s
(v/v0) 1

M

and
2500

Computer programs were developed for the quarter-area
of Fig. 1(b) because of the symmetry of the line.

The characteristic impedance and phase-velocity ratio
versus w/s of T-CPS, when a/s = 0.143 and 0.286, are
shown in Fig. 7. The upper curves of Fig. 7 show the char-
acteristics of the conventional strip line.

Table IIT shows a comparison of Z, and v/v; for the
conventional type and for the even mode of T-CPS (Zy !
and (v/vo).'"). From Tables IT and III the reduction ratios
of T-CPS (even-mode case) are larger than for S-CPS.

0
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TABLE III
REepucTIiON RATIO Z o 1T AND (v/06).IT vorR T-CPS

w/s=0 286
Conventional T-CPS | Reduction Ratio
Type a/s=0. 143 (percent)
Z,t 40 280 62
(v/vo)." 074 0 47 36

Reduction ratios w/s and (v/v,).! for a 50-2 transmission
line, compared with the T-CPS and conventional type,
are shown in Table IV. From Tables II and IV, it is ap-
parent that the reduction ratios w/s and v/v, for the T-CPS
are larger than for the S-CPS.

V. CHARACTERISTICS OF THE COUPLED
STRIP-CONDUCTOR COPLANAR-TYPE
STRIP LINE (C-CPS)

C-CPS has two coupled strip conductors and ground
plates on a dielectric substrate, as shown in Fig. 1(¢).

Computer programs were developed for two modes,
ie., 1) 1 = ¢» = 1.0 and ¢ = O for the even mode, and
2) Y1 = 1.0, ¥» = —1.0, and ¢, = 0 for the odd mode,
where ¢; and y; are the potentials of the coupled strip
conductors, respectively.

Two characteristic impedances and two phase—velocity
ratios are determined, i.e., Zoe, Zoo, (¥/%)¢, and (v/vo) .

The effect of the side wall and the ground plate is also
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TABLE IV
RepuctioN RaTio w/s AND (v/v0). For T-CPS 50-Q LiNE
w/s (v/vo)™
Conventional Type 075 0.79
afs=0 286 0 36 0 60
Redu((;teit::erﬁ;uio 52 24
120 .
Zoe a/s = 0.143
C/$=0.286 | !
100 =0.428 {(v/volo (wvole 1.0
20,572 C/520.572  (/5=0,286 2
- =0.428 =0.42 4
£ =0,28 =0,572 >
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Fig. 8. Zo,, Zoo, (v/v0)e, and (v/v9)o of C-CPS versus w/s for ¢/s
const.

smaller than that of a conventional coupled strip line, as
S-CPS and T-CPS. ‘

In Fig. 8, Zo, Zoo, (v/00)e, and (v/vy), versus w/s of
C-CPS are shown when c¢/s assumes constant values of
0.286, 0.428, and 0.572 and a/s assumes a constant value
of 0.143. (Other parameters ares = 4.3, g = 10.7,d = 0.61
mm, and € = 9.35).

From Fig. 8, the following is seen.

1) The characteristic impedance and phase—velocity
ratios are smaller than that of a conventional coupled
strip line, especially in the even-mode case. This means
that the resonator length of the filter and coupler and the
width of the strip conductor become small.

2) The differences between the phase—velocity ratios
of the even mode and odd mode become smaller than in
a conventional coupled strip line.

By using these charts, the filter and coupler design can
be accomplished.

VI. EXPERIMENTAL RESULTS OF THE
CHARACTERISTIC IMPEDANCE OF
S-CPS AND T-CPS

The circular dots plotted in Figs. 4, 5, and 7 are meas-
ured points. Experimental strip lines were made from gold-
plated Cr—Au thin film. The coaxial to strip line connec-
tion was achieved by an omni spectra miniature (OSM)
adapter. The characteristic impedances Z, of the S-CPS
and Zy!! of the T-CPS were measuredsby a time domsin
reflectometer. The maximum value of the differences from
the calculated value is 3 percent in the S-CPS in Figs. 4
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and 5 and 3.5 percent in the T-CPS in Fig. 7. This is con-~
sidered to be due to the uncertainty in the valué of the
relative dielectric constant of the substrate, equipment
construction errors, and measuring errors.

VII. ACCURACY OF CALCULATION

The accuracy of the results can be checked by compari-
son with the results of [13], and is shown in Table V,
where the program T-CPS (even-mode case) is computed
by setting b = 0 (i.e., conventional type). It is seen that
the value of the error of Zo,!! is 1.49 percent, when mesh
points of height s are 80 points, w/s = 0.2, and g/s = 3.0.
The accuracy in regard to (v/m) X is better than Z,,
as shown in Table V. In the calculation of the CPS, as
in Figs. 5 and 10, the mesh points of a are 84 points, g/s =
2.48 and error becomes small.

VIII. EXAMPLES OF CPS APPLICATION TO
MICROWAVE CIRCUITS

In this section, a microwave transistor amplifier using
S-CPS and a parallel-coupled filter using C-CPS are de-
scribed.

A. Microwave Transistor Amplifier

Various microwave transistor amplifiers have already
been reported, such as the balanced transistor amplifier
[14] and single-transistor-cascaded type [151-[18]. In
this section, a transistor amplifier using S-CPS for a com-
munication satellite use is described. In designing the
amplifier configuration, special attention is paid to the
realization of light weight, small size, and survival against
shock and vibration.

In S-CPS, as shown in Fig. 1(a), it is easy to ground
transistor leads and bypass capacitors by effective use
of the ground plates. The characteristic impedance and
phase—velocity ratio become small by setting the ground
plates near the center strip conductor.

The major problems in designihg transistor amplifiers
are the design of matching circuits and achievement of
good transistor grounding methods. The former is cal-
culated by computer-aided design (CAD) [19], [20]
and the latter is somewhat easier in CPS. The transistor
emitter is grounded on ground plates set near the emitter,
as shown in Fig. 9. The RF bypass capacitor (which has
an electrode for face bonding) can easily be soldered on
the terminals of the biasing induetance and ground plates.

Fig. 9 shows experimental results achieved for single-

TABLE V
Accuracy oF THE RELAXATION METHOD COMPARED WITH [13]
Results of [131 Results of Relaxation Method and Error

w/s g/s M

lesh Error Error

2@ ©/% (%) ZN0 ereenty | P (percent)

02 290 95.7 0. 8965 100X 200 94 912 0 82 0. 89611 0. 044
02 20 95 7 0. 8965 80X 160 94 648 109 0 89604 0 051
02 30 970 0 9008 100 300 95 780 125 0 90081 0 001
u2 30 97 0 0 9008 80X 240 95 554 149 0 90098 0.019
0 133 20 812 0 9109 60X 120 79 823 169 0 90942 0.162
0 333 30 818 0 9153 60X 180 80 785 124 0 91566 0 039
0 466 2.0 69 9 0 9209 60X 120 69. 472 061 0 91846 0178
{} 466 30 709 0 9259 60X 180 70.511 0 54 0 Y2587 0 003
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Fig. 9. Characteristics of single- and two-stage wide-band tran-
sistor amplifiers.

and two-stage amplifiers. From these results one sees
that the 3-dB bandwidth is more than 3 GHz (1.2-4.3
GHz) and the gain is 5 dB and 11 dB, respectively. The
transistor is a V-578 transistor (NEC) of n-p-n silicon
epitaxial-planar type.

A four-stage amplifier was constructed by cascading
two-stage amplifiers, using a matching circuit. An isolator
is added to the output port to improve the output VSWR
and for ease of cascading subsequent amplifiers or other
passive circuits. The isolator has a bandwidth greater
than 1 GHz and VSWR less than 1.5:1. The four-stage
amplifier and isolator dre mounted in a single compact
package as shown in Fig. 10, with the center strip con-
ductors and ground plates electrically connected by solder-
ing or thermal compression bonding. With this packaging
technique: 1) high performance stability is achieved by
reducing the number of coaxial connectors; 2) amplifier
blocks, as well as other circuits [for example, filters and
automatic gain control (AGC) ], can be connected or re-
placed as desired; and 3) miniaturization of the amplifier
assembly is obtained.

Fig. 11 shows the characteristics of the four-stage am-
plifier. This amplifier has a bandwidth greater than 1 GHz
(3.2-4.2 GHz), a gain of 22 dB &= 0.2 dB, an input VSWR
smaller than 3.0:1, and an output VSWR smaller than
1.6:1. Amplifier weight is 70 g.

Merits of the amplifier using S-CPS follow.

1) By using CPS, the electrical field is concentrated
near the center strip conductor, so signal injection to the
transistor chip and impedance matching can be achieved
smoothly. And the emitter lead inductance becomes small
due to the existence of a ground plate. As a result, wide-
bandwidth characteristics are realized.

2) Grounding can be accomplished reliably in a narrow
space so the amplifier size becomes small and the number
of soldered portions can be decreased, resulting in high
subsystem reliability. )

3) Low-impedance matching circuits (i.e., parallel ca-
pacitors) can be realized by getting near the ground plates
to center strip conductor. Small size can also be achieved.

4) Due to the existence of a ground plate, the effect of
other circuits on the amplifier characteristics becomes
smaller than in a conventional-type strip line.

B. Parallel-Coupled Filter Using C-CPS

By using a characteristic impedance and phase-velocity
ratio chart like Fig. 8 and the design formula of a parallel-
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Fig. 11, Characteristics of the four-stage transistor amplifier.

coupled filter, the demensions of a parallel-coupled filter

are determined. Fig. 12 shows the pattern of a parallel-
coupled filter using C-CPS. _

Fig. 13 shows an example of the characterlstlcs of this
filter.

In Fig. 13, four values of the length of resonator (1) and
gap distance between the edge of the resonator and the
ground plate (G) are chosen as follows. Parameters of
filter @ are I = 24.2 mm, G = 0.8 mm; parameters of
filter @ are I = 24.2 mm, G = 0.8 mm; parameters of
filter 3 are I = 19.6 mm, G = 1.5 mm; and parameters
of filter @ are [ = 24.2 mm, G = 0.3 mm. Alumina ce-
ramics were put in the gaps. Lines were made from silver-
plated Cr—Au thin film.

From Fig. 13, the following is seen.

1) The filter symmetry in the. frequency characteristic
is better than that of a conventional suspended triplate
strip line. because of the small difference of the phase-
velocity ratio between the even mode and the odd mode
of C-CPS. :

2} The resonator length and width of line become small
because the characteristic impedance and phase-velocity
ratio are smaller in C-CPS than in conventional coupled
strip line. '

3) The resonator length can be further shortened by
using ‘a small gap distance between the resonator edge
and ground plate (). In Fig. 13, G values of 0.3 mm,
0.8 mm, and 1.5 mam are shown. In the case of ¢
mm and [l =
cent, compared with a conventional suspended triplate
strip-line. coupled filter. This reduction ratio can be in-
creased by using a small value of G.-

Such capacitive loading by narrowing the gap distance
between the resonator edge and the ground plate can only

- 03
24.2 mm the reduction ratio is about 50 per- -
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Fig. 13. Characteristics of C-CPS parallel-coupled filter.

done by using C-CPS (i.e., the fringing capacitance of a
conventional type of filter is smaller in value than for
C-CP8B).

4) Due to the existence of a ground plate, the effect

‘of a side wall or of other circuits on the filter characteris-

ties becomes smaller than in a conventional strip-line filter.
Also the side wall can be near the strip conducto‘r, so the
filter becomes small in size.

5) The filter resonance frequency can be <h1fted lower
by putting a dielectric (for example, Teflon or alumina

" ceramics) in the gap between resonator edge and ground

plate as shown in the curve @ in Fig. 13. The reduction
ratio can thereby be increased. This shows that resonance
frequency fine tuning is easy in this type of filter.

IX. CONCLUSION

Using the relaxation method, the characteristics of the
S-CPS and the T- CPS are obtained. Merits of the CPS
are the following. 1) The CPS is a shiclded-type trans-

- mission line, so it is suitable for use in high-gain transistor

amphﬁers or other active circuits. 2) The characteristic
impedance and phase—velocity ratio become small, com-
pared with the conventional-type line, due to the existence
of ground plates. 8) It is easy to connect shunt elements,
for example, in the circuits in transistor amplifiers. 4) It
can be used in nonreciprocal magnetic-device applications,
similar to the CPW [1] and slot line [217]. 5) The effect of
side wall and other circuits near the center conductor is
smaller than for a conventional type. 6) The effect of
variation of distances is smaller than for a conventional
type. 7) When the T-CPS is used as coupled line, the
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difference between even- and odd-mode phase—velocity
ratio is smaller than for the conventional type, so direc-
tional couplers and filters which have good characteristics
can be achieved. 8) It is casy to use together with the
CPS and conventional-type line.

Examples of application of S-CPS in a transistor am-
plifier and C-CPS in a parallel-coupled filter, respectively,
are shown.,

A transistor amplifier small in size, light in weight, with
wide bandwidth and more reliability is achieved.

A parallel-coupled filter small in size, with good fre-
quency symmetry and easy resonance frequency fine tun-
ing is obtained.

There are many other CPS applications, for example,
microwave tunnel-diode amplifier, mixer, coupler [227],
attenuator, and nonreciproecal circuits at microwave fre-
quencies.

The relaxation method analysis is a quasi-TEM ap-
proximation. Thus it has a high-frequency limit, so another
method should be considered at high frequencies.
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